
22 CrossTalk—July/August 2015

DATA MINING AND MEASUREMENTS

Hybrid-Agile
Software
Development
Anti-Patterns, Risks,
and Recommendations
Paul E. McMahon, PEM Systems

Abstract. Many organizations are driving toward increased agility in their
software development practices. However, due to various constraints (e.g. project
size, team physical distribution, compliance requirements, technical complexity) a
pure Agile approach is not always feasible. This leads to what today is commonly
referred to as a “hybrid-agile” [1, 2] approach. Using a hybrid-agile development
approach requires that organizations think carefully about process tailoring and
metrics decisions to ensure they stay aligned with their performance goals.

The purpose of this paper is to provide motivation for hybrid-agile approaches,
identify common challenges hybrid-agile projects face today, and to provide
recommendations that can help teams using a hybrid-agile approach reason
through their challenges leading to more effective process tailoring and
metrics decisions. Anti-patterns and related risks commonly observed today
on large complex hybrid-agile efforts are identified and employed as an aid in
demonstrating the reasoning process.

Introduction
The Goal - Question – Metric (GQM) approach to determine

optimum metrics [3] has long been accepted as the gold standard
for metrics identification. With GQM you start by asking:

“What is our goal?”
Then you formulate a set of questions that can help you assess

how well you are doing toward achieve the goal. This leads to a
set of metrics to collect that will help answer those questions.

What is the goal of measurement on most software
development projects?

First, most organizations measure to understand where
they are with respect to where they planned to be so that
corrective action can be taken when necessary. An example
could be to add resources when your measurements indicate
you are behind schedule.

A second reason many organizations take measurements is
to help improve performance. These improvements could be on
the next project, or the next iteration of the current project.

Understanding your goal is important because the best
measurements to collect in a given situation depend on what you
are trying to achieve. Let’s now look closer at what organizations
are trying to achieve when using a hybrid-agile approach.

Why Hybrid-Agile?
In today’s rapidly changing, competitive, fast- paced world

organizations need to be able to get product to market faster, and
they need to be able to respond rapidly with product changes to
address changing customer needs. However, many of these same
organizations also live in highly regulated environments where
compliance to standards is equally critical to business success.

Part of being effective in responding to change and
complying with regulations is being able to predict how long
all the work will take to get new or modified features ready for
stakeholder use while ensuring no critical steps are bypassed.

To predict we must be able to estimate the work effort, but
unfortunately accurate software cost/schedule work estimation has
alluded the software community since the early days of software
development. This observation is not new. Over 15 years ago Tom
Demarco and Tim Lister explained the problem as follows [4]:

“Most software managers do a reasonable job of predicting
the tasks that have to be done and a poor job of predicting the
tasks that might have to be done.”

While the problem of predicting the tasks that might have
to be done has been difficult for the software community for a
long time-- and especially difficult on large complex software
efforts-- the recent agile movement has given us some new
ways to think about, predict, and measure progress.

What is Different in How Agile Projects Measure
Progress?

A major reason why the agile movement continues to
gain steam even after ten years is the recognition that many
stakeholders do not fully understand the requirements for
their desired software system at the start of their endeavor.
Furthermore, most professionals involved in software
development today know we need a better way to deal with
rapidly changing requirements even late in the project.

Agile practices emphasize the need for development teams
to work closely with stakeholder representatives to uncover the
stakeholder’s real needs and manage the resultant work from
the start of the endeavor through its completion.

Nevertheless, as organizations have tried to implement these
promising new agile practices-- particularly in large, constrained
environments-- the resultant agile-tailoring’s have led to
difficulties and a number of commonly observed anti-patterns.

Anti-Patterns, Observations, Risks and
Recommendations

In this section seven anti-patterns commonly observed on
hybrid-agile efforts are identified and discussed. For each
anti-pattern, observations, risks and recommendations are
provided demonstrating a reasoning process1 [6] that could
help organizations using a hybrid-agile approach make better
process tailoring and metrics decisions.

CrossTalk—July/August 2015 23

DATA MINING AND MEASUREMENTS

Anti-Pattern One: Creating an “aggregated” team velocity
metric and using it to predict and drive progress

Observations, Risks and Recommendations
Team velocity is a metric that is used to measure the amount

of work an agile team estimates it can complete in the next
Sprint2 [7] based on recent team performance.

Most organizations looking to increase agility today
understand the importance of creating small Scrum4 teams even
on large complex efforts [8], but many don’t yet understand
the importance of empowering these small teams with the
responsibility to measure themselves.

Often what we see on large hybrid-agile projects is the
velocity being set at a high level in the organization and given
to the small teams, rather than allowing the small teams to
measure their own velocity and then set the target work for the
next iteration based on their own recent past performance.

The most accurate estimates of effort to complete work
are based on recent performance of each specific small
team doing the work. Each small team should measure its
own velocity. Organizations should anticipate varying team
velocities for each small team.

Defining team velocity from the top defeats the purpose
of the velocity metric. When used appropriately Scrum
teams should get better at predicting the work that can be
accomplished in each sprint as they progress from sprint to
sprint learning from their own velocity.

It is recommended that you let your project manager
know where he or she can see each small team’s velocity
measurements in a place where it is visible to the whole team,
such as on the wall in a room where each small team holds their
daily standup meetings5 [7]. This will keep the true velocity visible
to the team and will reduce the temptation for intermediate and
senior managers to use this metric inappropriately.

Anti-Pattern Two: Telling the team to work harder to
improve performance.

Observations, Risks and Recommendations
When progress is not being achieved per the plan too often

the response has been to tell the team members to work harder,
such as by putting in overtime hours, to improve performance.
While overtime can help to improve performance in isolated
instances, excessive regular overtime risks team burn out, and it
does not get to the underlying root cause. Furthermore, in these
situations, team members often respond by cutting corners and
not following their agreed to way of working (e.g. reducing their
planned testing or peer reviews). Ultimately this leads to more
latent defects and longer schedules.

One approach that can help is to encourage your teams to
use the story point efficiency metric. Story point efficiency
[6] is defined to be the ratio of the estimated time to
complete a user story6 [9] divided by the actual time it took.
This metric can help teams quickly identify problem areas
in their requirements/user stories and investigate those
problems in a timely way to learn what is hindering the team
from achieving their estimate. It is recommended that you
keep each small team’s story point efficiency measures

visible to the whole team, and encourage them to use this
measurement data to continually improve their velocity.

When teams don’t hit their estimates it usually isn’t hard for
them to figure out why, if you give them the time to investigate
the situation right when the problem is happening. This is also
the best time to resolve the problem because it doesn’t delay
the resolution to the next project, or even the next iteration of
the current project. It can help the team’s performance right
when the problem is happening by raising the visibility of the
problem to the right level and getting it resolved in a timely way.

Agile teams must own their practices and their
continual improvement

A key strength teams gain from using the story point
efficiency metric is that it gives teams the data they need to put
improvements in place. This includes identifying weaknesses that
have slowed them down in the past and putting improvements,
such as better checklists, in place to catch similar potential
problems in the future. If they still don’t see velocity improvements
after implementing changes, it is likely they are not putting the
right improvements in place to resolve the problem. Agile teams
are self-directed which means it is the responsibility of the team
members to identify and resolve performance issues.

Agile practices can work only if the agreed way of working
within the organization empowers the team to make timely
changes necessary to improve without going through
bureaucratic approvals outside the team.

Anti-Pattern Three: Failure to actively manage risk
exposure at the small team level.

Observations, Risks and Recommendations
Today on many large complex efforts we see risk management

carried out at the senior management level, and not effectively
implemented deep into the organization. A key agile principle is
to take on risky work early driving overall project risk down as
the project proceeds [10]. Risks should be actively identified and
managed at the small team level, and then rolled up consistently
to the higher level—not the other way around. When small agile
teams plan their work for each sprint they actively discuss risks to
ensure they are driving the risks down early.

It is recommended that you keep the risk trend visible to the
team to help the team discuss the right issues when making key
work related decisions for the next sprint. The risk assessments
at the small team level should be rolled up in a consistent way to
provide an accurate overall project risk assessment.

Anti-Pattern Four: Failure to actively manage stakeholder
involvement and stakeholder representation competency.

Observations, Risks and Recommendations
Too often we see organizations trying to increase their agility

at the development team level, but failing to recognize that
agility requires changes in the behavior of the stakeholder
community as well. To gain the benefit of agility stakeholder
representatives with the right competencies must be assigned,
agree to their responsibilities, and be given the time to carry out
their responsibilities in a timely fashion.

24 CrossTalk—July/August 2015

DATA MINING AND MEASUREMENTS

Too often we see the stakeholder representatives that are as-
signed are people with inadequate competency to carry out this
critical role. The stakeholder representation role requires people
with the ability to gather, communicate and balance the needs
of other stakeholders, and accurately represent their views—not
just their own views. [6]

Anti-Pattern Five: Using “proxy releases” rather than
formally selling-off products incrementally.

Observations, Risks and Recommendations
On large projects, due to various constraints, it is often the case

that products cannot be made operational every sprint. Therefore
large projects typically conduct multiple sprints leading to each
release. On very large projects a release could be every 6 Sprints
(or every 6 months). However, these releases should be real “sell-
offs” of product to the real stakeholders/customer.

An anti-pattern commonly observed is for these releases to
be conducted as “proxy releases.” By “proxy release” I mean a
release which is not a formal/official sell-off to the real stake-
holders. Rather it comprises some level of testing and demon-
stration in the presence of someone representing the stake-
holders, but not authorize to formally accept the product.

The rationale provided for “proxy releases” often relates
to constraints such as inability to operationally deploy partial
functionality, and/or the lack of availability of key stakeholder
representatives. However, the fact that the product cannot be
deployed on short cycles should not get in the way of stakehold-
ers being involved, responsible, and given the time to collaborate
and accept functionality on short cycles.

The risk with “proxy releases” is that too often, when a real
product acceptance is not conducted, we see the development
teams and stakeholder representatives just “going-through-
the-motions” and not rigorously testing against the agreed to
requirements/features allocated to that release.

Often these “proxy” events do not have stakeholder representa-
tives that are authorized, and knowledgeable to provide real an-
swers and to conduct a thorough review of the product. Ultimately
this leads us back to the traditional integration and test problems
late in the project and the goal of getting product and product

Traditional approaches to measure progress are well known along with their shortcomings. The most widely used approach on
large complex software efforts is Earned Value Management (EVMS) [5]. The fundamentals of EVMS include breaking the work
down into small pieces, estimating the cost of each piece, and monitoring actual expenditures against an agreed to baseline plan.

One weakness with EVMS rests in the assumption that we know all the work that must be done when we plan it, and we know
how long each piece will take to complete. Another weakness is the fact that even if we get all the identifiable work done it doesn’t
necessarily mean the stakeholders will be satisfied that the software system is ready for use.

Traditionally many organizations that use EVMS have addressed these weaknesses by applying risk management practices. However,
the way these practices have been carried out in many organizations have failed to adequately address these weaknesses in a timely
way.

For example, in one of my client organizations I heard that when a potential risk is raised so much collateral evidence had to be gath-
ered that effectively they had to prove the risk was already a problem before the risk board would accept it.

In another client organization I heard that no one ever raises a schedule risk because the culture in the organization had become
one that just accepted the fact that all good schedules had to be aggressive and risky given today’s business climate. So risk in a
schedule was no longer perceived as a risk that needed to be managed. Rather it was now perceived as an acceptable part of the
normal way of working due to the aggressive business climate.

How Have We Traditionally Measured Progress?

changes to the customer rapidly is not achieved.
I have probably heard most, if not all, of the reasons why “we

can’t” sell-off incrementally.
Yes, it takes authorized and knowledgeable stakeholder

representatives from the customer side.
Yes, the team needs to complete all their work that they

have committed to following their agreed way of working
including thorough testing.

Yes, all the key stakeholders need to agree that the software
system is worth making operational.

But these are the points why agile works. A key agile practice
is to get the work done in short increments and get product to
customer sooner which also reduces the risk of late surprises,
extended schedules, and cost over-runs.

Why is this so important?
If you aren’t measuring features accepted by the customer

incrementally, you haven’t really understood why agile de-
velopment can help you achieve your ultimate goal, and you
probably won’t.

Anti-Pattern Six: Essentially traditional development with a
few “agile practices” sprinkled in to make the project appear “agile.”

Observations, Risks and Recommendations
I have observed many large projects that claim to be using

agile methods to be essentially traditional development with a
few agile practices being conducted by the development teams.
When I have looked close at these projects that are essentially
traditional I often have found a “business as usual” attitude
even though they may use the “agile” buzzword. The risk in this
approach is that it is highly unlikely they will ever experience the
real potential value of agility.

One way to counter this risk is to use the “how agile are we?”
metric. The “how agile are we?” metric gives you an indication
of the degree of agile practice adoption by your team. There are
numerous ways to measure how agile you are, many of them by
survey. Examples include the Shodan Adherence Survey and the
ComparativeAgility Assessment [11].

For many years I did not like the “how agile are we?” metric
because my view was it didn’t matter how agile an organization

CrossTalk—July/August 2015 25

DATA MINING AND MEASUREMENTS

was, it was more important that they had the “right level of
agility” given their situation. But I have since discovered that the
“how agile are we?” metric can give an organization an early
indication of the likelihood that their “brand-of-agile” will help
them achieve their performance goals. This metric can give you
a good idea early in your project of the level of commitment your
organization really has to agile practices.

A Simple Way to Measure “How Agile Are We?”
While hybrid-agile projects can vary across a continuum

they could be characterized at the extremes and in the middle
through a simple three level scale as follows:

Case 1: Fully Committed
Fully committed means the project has adopted an agile

approach across the entire program including systems
engineering, test, and stakeholder participation. Characteristics
of the fully committed case include:

• Requirements expressed in user story form in a backlog
• The backlog provides the one and only list of requirements
• The backlog is refined, and reprioritized at the start of

 each sprint
• Systems engineering and test is integrated into the small

 scrum teams
• Authorized stakeholders provide product owner role

 attending sprint demos accepting product deliverables at
 sprint level

Case 2: Hybrid Agile/Traditional
There could exist varying levels within this case, but the

typical characteristics include:
• High level requirements completed early in project by

 systems engineering and allocated to multiple sprint releases
• Lower level requirements generated as user stories and

 managed by small scrum teams through backlog
• Some level of stakeholder representative involvement at

 sprint demos
• Multiple sprints lead to release sell-off at sprint release

 level with authorized stakeholder representatives present

Case 3: Essentially traditional program with a few
agile practices conducted by the software teams.

Characteristics of this case include:
• Requirements developed up front by systems engineering
• Requirements developed and managed traditionally in tool

 such as DOORS7

• Software scrum teams break high level requirements down
 into user stories and manage through backlog within sprints

• Multiple sprints lead to release sprint
• Sprint demos may be conducted to get early feedback at

 release sprint, but no or minimal acceptance/sell-off of
 product at sprint release level

• All or majority of requirements tested at end of project
 through traditional integration and test/acceptance

Risks Associated with the Three “How agile are
we?” Hybrid-Agile Cases

Case 1: Requires significant investment by customer to

train and commit customer personnel to participate regularly in
project activities throughout lifecycle.

Case 2: When choosing a hybrid agile/traditional approach,
if personnel involved lack agile experience, there is risk of poor
tailoring decisions (e.g. practices, metrics) leading to failure to
achieve the intended agile benefits.

Case 3: A major value in using agile approaches is to
improve contractor-stakeholder communication and reduce the
risk of unexpected latent defects and cost/schedule overruns.
This value is unlikely to be achieved in Case 3 since the
authorized and knowledgeable stakeholder representatives are
not engaged throughout the endeavor.

Anti-Pattern Seven: Using the requirements volatility
measure inappropriately to control scope creep.

Observations, Risks and Recommendations
Requirements volatility is a common metric that has been

used traditionally to manage requirements scope creep. Often
this metric continues to be used in an inappropriate way on
hybrid-agile endeavors. When using agile practices trying to
control project cost and schedule by minimizing requirements
changes can conflict with recognized best agile practices. With
agile practices you collaborate with your customer to provide the
best value for the available resources. Therefore as the project
proceeds it may be fine for changes to occur in priority and
content of the requirements backlog. When you move to an agile
approach continual and close collaboration with the customer
trumps controlling requirements volatility.

If you have an effective collaborative relationship with your
customer it can be beneficial to allow requirements volatility (e.g.
requirements changes late). Requirements stability isn’t the end
goal. Stakeholder satisfaction is.

Summary
The purpose of this paper has been to provide motivation for

hybrid-agile approaches, identify common challenges hybrid-agile
projects face today, and to provide recommendations that can
help teams using a hybrid-agile approach reason through their
challenges leading to more effective process tailoring and metrics
decisions. Anti-patterns and related risks commonly observed
today on large complex hybrid-agile efforts were also identified and
employed as an aid in demonstrating the reasoning process.

ABOUT THE AUTHOR
Paul E. McMahon, Principal, PEM
Systems (www.pemsystems.com) has
been an independent consultant since
1997. He has published more than 45
articles and multiple books including “15
Fundamentals for Higher Performance in
Software Development.” Paul is a Certi-
fied Scrum Master and a Certified Lean
Six Sigma Black Belt. His insights reflect
24 years of industry experience, and 17
years of consulting/coaching experience.
Paul has been a leader in the SEMAT
initiative since 2010.
E-mail: pemcmahon@acm.org

http://www.pemsystems.com
mailto:pemcmahon@acm.org

26 CrossTalk—July/August 2015

DATA MINING AND MEASUREMENTS

REFERENCES

1. The Essence framework was used as a guide in developing the referenced
 “reasoning process”
2. The heart of Scrum is a Sprint. A time-box of one month or less during which a
 “done”, usable, and
 potentially releasable increment of software is created.
3. Experience has proven that effective Scrum teams should be no larger than 8-10
 people
4. Scrum is a framework for developing and sustaining complex products.
5. A daily standup meeting, also referred to as a daily Scrum, is a time-boxed 15
 minute meeting each day where the team synchronizes activities for the next
 24 hour day.
6. User stories is one way to describe requirements when using agile
 software development
7. DOORS is a commercially available requirements management tool

1. Ambler, Scott, Lines, Mark, Disciplined Agile Delivery, IBM Press, 2012
2. McMahon, Paul E., “Integrating CMMI and Agile Development: Case Studies and Proven Techniques for Faster Performance Improvement, Addison-Wesley, 2011
3. Humphrey, Watts, “A Discipline for Software Engineering”, Addison-Wesley, 1995
4. Demarco, Tom, Lister, Timothy, “Waltzing with Bears”, Dorset House Publishing, 1995
5. Solomon, Paul J., “Practical Performance-Based Earned Value”, Crosstalk, The Journal of Defense Software Engineering, May, 2006
6. McMahon, Paul E., “15 Fundamentals for Higher Performance in Software Development”, PEM Systems, http://amzn.com/099045083X. July, 2014
7. Sutherland, Jeff, Schwaber, Ken, “Scrum Guide-- The Definitive Guide to Scrum: The Rules of the Game”, July 2013
8. McMahon, Paul E., “Lessons Learned Using Agile Methods on Large Defense Contracts,” Crosstalk, The Journal of Defense Software Engineering, May, 2006
9. Cohn, Mike, “User Stories Applied: For Agile Software Development, Addison-Wesley, 2004
10. McMahon, Paul E., “Defense Acquisition Performance: Could Some Agility Help?”, Crosstalk, Journal of Defense Software Engineering, February, 2009
11. Cohn, Mike, “Succeeding with Agile: Software Development Using Scrum, Addison-Wesley, 2009

NOTES

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
the areas of emphasis we are looking for:

Software - A People Product
Jan/Feb 2016 Issue

Submission Deadline: Aug 10, 2015

Cyber Workforce Issues
Mar/Apr 2016 Issue

Submission Deadline: Oct 10, 2015

Integrated Warfighting Capabilities
May/Jun 2016 Issue

Submission Deadline: Dec 10, 2015

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

https://www.linkedin.com/redirect?url=http%3A%2F%2Famzn%2Ecom%2F099045083X&urlhash=fpiq&_t=tracking_disc
http://amzn.com/099045083X
http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar
http://www.dhs.gov/cybercareers
http://www.usajobs.gov

